

Maria Bernadete Luciano Lopes

Influência da sucção na resistência ao cisalhamento de um solo residual de filito de Belo Horizonte, MG

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientadores: Tácio Mauro Pereira de Campos Franklin dos Santos Antunes Lúcio Flávio de Souza Villar

Maria Bernadete Luciano Lopes

Influência da sucção na resistência ao cisalhamento de um solo residual de filito de Belo Horizonte, MG

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Tácio Mauro Pereira de Campos Presidente/Orientador PUC-Rio

Franklin dos Santos Antunes Co-orientador PUC-Rio

José Tavares Araruna Júnior PUC-Rio

George de Paula Bernardes UNESP-Guaratinguetá

José Eugênio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 11 de agosto de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Maria Bernadete Luciano Lopes

Graduou-se em Engenharia Civil pela Universidade Federal de Minas Gerais em 2003. Participou de pesquisas em Engenharia Ambiental em 2002 e do Programa de Iniciação à Docência da Pró-Reitoria de Graduação (PROGRAD/UFMG) em 2002/2003 na área de Mecânica dos Solos. Estagiou no Laboratório de Geotecnia da EEUFMG em 2003. Ingressou no curso de mestrado em Engenharia Civil - Geotecnia no início de 2004. Principais áreas de interesse e linhas de pesquisas: Geotecnia Ambiental, Geotecnia Experimental e Mecânica dos Solos.

Ficha Catalográfica

Lopes, Maria Bernadete Luciano

Influência da sucção na resistência ao cisalhamento de um solo residual de filito de Belo Horizonte, MG/Maria Bernadete Luciano Lopes; orientador: Tácio Mauro Pereira de Campos; co-orientadores: Franklin dos Santos Antunes, Lúcio Flávio de Souza Villar. - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2006.

175 f.; 30 cm

Dissertação (Mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia Civil - Teses. 2. Resistência ao cisalhamento. 3. Solo não saturado 4. Solo residual 5. Filito I. de Campos, Tácio Mauro Pereira. II. Antunes, Franklin dos Santos. III. Villar, Lúcio Flávio de Souza. IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. V. Título

CDD: 624

Os meus sonhos nos colocaram distantes, porém, nunca estive tão perto.

Dedico esta dissertação: A meus pais, Luciano e Iris, por serem a base de tudo o que sou. A meu irmão, André, pelo companheirismo nas horas alegres e nas difíceis.

Tudo o que sou devo a vocês.

Agradecimentos

Primeiramente e acima de tudo, agradeço a Deus por me dar força e coragem para enfrentar todos os desafios colocados na minha vida.

A meus pais e meu irmão, por entenderem e acreditarem em meus sonhos e por sempre se orgulharem de mim. A todos meus familiares, por incentivarem e apoiarem incondicionalmente.

A CAPES, PRONEX-Rio/FAPERJ-CNPq e FAPEMIG pelo auxílio financeiro indispensável para o desenvolvimento deste trabalho.

Ao professor Tácio de Campos, primeiramente, por ter aceitado me orientar. Por ser um exemplo de dedicação ao trabalho e à geotecnia, estar sempre disposto a ajudar e ter tanta paciência comigo. Seu conhecimento e incentivo foram indispensáveis nessa etapa da minha vida. O convívio me ensinou a admirá-lo.

Ao professor Franklin Antunes, por seu conhecimento incomparável e sua doce presença, sempre disposto a uma boa conversa, seja ela geotécnica ou pessoal. Em você vejo mais que um mestre. Você foi fundamental nessa caminhada.

Ao professor, amigo e eterno orientador Lúcio Villar, por me iniciar na geotecnia. Sou grata, principalmente, por acreditar sempre em minha capacidade e inteligência, muitas vezes, mais do que eu.

Aos membros da banca examinadora, George Bernardes e José Araruna, pelas sugestões e correções a fim de melhorar o meu trabalho.

Ao pessoal do Laboratório de Geotecnia e Meio Ambiente da PUC-Rio, em especial, ao William Braga, "Seu" José, Josué e Amaury, pelos serviços prestados, pelas conversas e "cafés" na AFPUC e, principalmente, pela paciência. A ajuda de vocês foi fundamental.

Ao funcionário Ronaldo Silva, do Laboratório de Difratometria de Raios-X do DCMM, pela disponibilidade e rapidez ao realizar minhas difratometrias.

Ao funcionário Heitor Guimarães, do Laboratório de Análise de Materiais e Tratamento Térmico do DCMM, pela disponibilidade em me ajudar com as fotos na lupa binocular.

Aos funcionários e alunos do Laboratório de Geotecnia da UFMG: à Andréa Portes, Rodrigo Zago, Fábio Campos e, em especial, ao casal nota mil, Silvia "Silvis" Martins e Leandro "Mala" Fróes, por realizarem as amostragens, os ensaios de cisalhamento direto convencional e sempre serem solícitos quando precisei.

Aos funcionários do DEC, principalmente, à Ana Roxo, Rita, Fátima, Lenilson, Marcel e Christiano, por sempre ajudarem no que foi preciso.

Aos meus queridos amigos da UFMG, todos vocês fizeram parte dessa caminhada. Especialmente à Helena, Isabella, Jeanne, Aline e Silvia, pelos papos virtuais, conselhos, incentivo e, principalmente, pela amizade sincera. Amo vocês.

Às meninas do 305-A, Gisele, Juliana e Patrícia, por confiarem em mim e abrirem as portas da sua casa, que passou a ser nossa, mesmo sem me conhecer; também, por compartilharem sorrisos e enxugarem lágrimas. Nunca vou esquecê-las.

À Vivi, minha amiga-irmã, que aprendi a amar como se fosse da minha família. Você esteve ao meu lado em momentos mais especiais e nos mais difíceis. Nunca vou me esquecer do companheirismo e amizade que a mim dedicou. TE ADORO!

Às meninas "Futura", Vivi (de novo), Dani, Carlinha e Lore, por estarem presentes sempre, "na alegria e na tristeza, na saúde e na doença, na riqueza e na pobreza" (risos). Morar junto é isso, quase um casamento. Foram momentos inesquecíveis. Vocês são as irmãs que eu não tive. Aos "agregados", Guilherme e Julien, por aturarem minha implicância constante. AMO MUITO VOCÊS.

A todos os amigos da PUC – Rio, principalmente, "Anita" Lúcia, Trícia, Ygor, Álvaro, Thaís, Ale, Jô, Amanda, Vivian, Guilherme Slongo, Hyllttonn e Roberto. Com vocês essa fase, por vezes dura, foi mais divertida.

Aos amigos da 607-D que fizeram os dias de clausura mais alegres. Em especial ao meu amigo Elvídio!

Às amigas "micro"-biólogas, Denise (Mãenise), Carol Magda, Lya e Ana Luíza, o companheirismo, amizade e incentivo de vocês foram DEMAIS.

Finalmente, mas não menos importantes, aos meus "abigos" do coração, Lica, Taíse, Carol, Mónica, Lu, Vini e Tânia, pela amizade incomparável e indiscutível e pelas "consultorias" de assuntos mais que aleatórios. Se não desisti, vocês foram os "culpados". Sei que posso contar sempre com vocês.

Resumo

Lopes, Maria Bernadete Luciano; de Campos, Tácio Mauro Pereira; Antunes, Franklin dos Santos; Villar, Lúcio Flávio de Souza. Influência da sucção na resistência ao cisalhamento de um solo residual de filito de Belo Horizonte, MG. Rio de Janeiro, 2006. 175p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho, analisou-se a influência da sucção na resistência ao cisalhamento de um solo residual jovem de filito da região metropolitana de Belo Horizonte (MG). A fim de determinar a resistência ao cisalhamento do solo não saturado, foram realizados ensaios de cisalhamento direto com sucção controlada em amostras indeformadas e teor de umidade natural. Foram feitos também ensaios de cisalhamento direto convencional, em corpos de prova indeformados e submersos. Tais ensaios foram executados com diferentes níveis de tensão. Determinaram-se as curvas de retenção de umidade através do método do papel filtro, para se obter a relação entre a sucção e o teor de umidade do solo. O programa experimental compreendeu também ensaios de caracterização geotécnica, análises químico-mineralógicas. A partir da análise dos resultados de ensaios de cisalhamento direto convencional e com sucção controlada foi possível estabelecer uma envoltória de resistência ao cisalhamento em três dimensões para o solo estudado, função das variáveis de tensão (σ-u_a) e (u_a-u_w). Também são apresentadas algumas considerações sobre a influência da sucção na compressibilidade do material. Por fim, fez-se uma comparação dos resultados obtidos para a resistência ao cisalhamento com estimativas indiretas através de formulações simplificadas que usam os parâmetros efetivos de resistência e a curva característica de sucção (i.e. Lytton, 1995; Vanapalli et al., 1996; Fredlund et al., 1996; Öberg e Sällfors, 1997), assim como com outros resultados encontrados na literatura técnica.

Palavras-chave

Resistência ao cisalhamento; Solo não saturado; Solo residual, Filito; Sucção; Curva Característica de Sucção; Ensaio de Cisalhamento Direto com Sucção Controlada.

Abstract

Lopes, Maria Bernadete Luciano; de Campos, Tácio Mauro Pereira (Advisor); Antunes, Franklin dos Santos (Co-advisor); Villar, Lúcio Flávio de Souza (Co-advisor). Influence of suction on the shear strength of a filite residual soil from Belo Horizonte, MG. Rio de Janeiro, 2006. 175p. MSc. Dissertation - Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

This work intends to evaluate the influence of suction in the shear strength of a young residual filite soil from Belo Horizonte city, of Minas Gerais, Brazil. The experimental program included conventional tests of geotechnical, chemical and mineralogical characterization. The relationship between suction and water content of soil was obtained by the filter paper method and represented graphically by soil-water characteristic curves (SWCC). In order to determine the shear strength of unsaturated soil, direct shear tests with controlled suction were executed with soil samples in their natural state. In addition, conventional shear strength tests were performed with undisturbed and submersed specimens. Both types of tests were performed with different values of stress. From the analysis of the tests' results it was possible to establish a three-dimensional shear strength envelope in function of the stress state variables (σ-u_a) and (u_a-u_w). Moreover, some considerations about the influence of stress variables in compressibility of soil are discussed. Finally, a comparison of the results obtained for the soil's shear strength was made with different prediction models using the SWCC and the effective strength parameters (i.e. Lytton, 1995; Vanapalli et al., 1996; Fredlund et al., 1996; Öberg e Sällfors, 1997). The results were also compared with other data found in the literature.

Key-words

Shear Strength; Unsaturated Soil; Residual soil; Filite; Suction; Soil-Water Characteristic Curves; Direct shear with controlled suction tests.

"O valor das coisas não está no tempo em que elas duram, mas na intensidade com que acontecem. Por isso existem momentos inesquecíveis, coisas inexplicáveis e pessoas incomparáveis".

Fernando Pessoa

Sumário

1 Introdução	26
2 Mecânica dos Solos Não Saturados	28
2.1 Solos Não Saturados	28
2.2 Fases Constituintes dos Solos Não Saturados	29
2.3 Variáveis do Estado de Tensão	30
2.4 Sucção	33
2.4.1 Componentes da Sucção	33
2.4.2 Métodos de Medição da Sucção	35
2.4.3 Curva Característica de Sucção	38
2.5 Técnica de Translação dos Eixos	43
2.6 Resistência ao Cisalhamento	44
3 Área de Estudo e Amostragem	51
3.1 Meio Físico	51
3.1.1 Localização e características gerais	51
3.1.2 Aspectos Climáticos	53
3.1.3 Relevo e Vegetação	55
3.1.4 Geologia e Geomorfologia	55
3.2 Amostragem	57
3.2.1 Localização, coleta e denominação das amostras	57
3.2.2 Características Tátil-Visuais	60
4 Equipamentos, Rotinas e Programas de Ensaios	62
4.1 Ensaios de Caracterização	62
4.1.1 Caracterização Física	62
4.1.2 Caracterização Mineralógica	63
4.1.3 Caracterização Química	65
4.1.4 Programa de Ensaios	66
4.2 Ensaios para Obtenção da Curva Característica de Retenção de Água	66
4.2.1 Rotinas e Técnicas de Ensaio	67
4.2.2 Programa de ensaios	68
4.3 Ensaios de Cisalhamento Direto Convencional	69

4.3.1 Equipamento	69
4.3.2 Rotinas e Técnicas de Ensaios	70
4.3.3 Programa de Ensaios	71
4.4 Ensaios de Cisalhamento Direto com Sucção Controlada	71
4.4.1 Equipamento	71
4.4.2 Rotinas e Técnicas de Ensaios	74
4.4.3 Programa de Ensaios	78
5 Caracterizações Física, Mineralógica e Química	79
5.1 Características Físicas	79
5.1.1 Índices Físicos do Estado Natural	79
5.1.2 Análise Granulométrica	79
5.1.3 Limites de Atterberg	81
5.1.4 Classificação do solo – SUCS	81
5.2 Características mineralógicas	82
5.2.1 Observação na Lupa Binocular	82
5.2.2 Difração de Raios X (DRX)	86
5.2.2.1 SR1	86
5.2.2.2 SR2	87
5.2.2.3 SR3	89
5.2.2.4 Rocha	90
5.3 Características químicas	92
5.3.1 Análise química total	92
5.3.2 Análise química parcial	93
5.4 Curva característica de sucção	97
6 Ensaios de Resistência	104
6.1 Ensaios de cisalhamento direto convencional	104
6.2 Ensaios de cisalhamento direto com sucção controlada	105
6.2.1 Ensaios com Tensão Normal Líquida Constante	107
6.2.1.1 Série I	108
6.2.1.2 Série II	111
6.2.1.3 Série III	113
6.2.1.4 Análise dos resultados obtidos	115
6.2.2 Comparação de ensaios com mesmo nível de sucção	115
6.2.2.1 Sucção Mátrica = 25 kPa	117
6.2.2.2. Succão Mátrica – 50 kPa	118

6.2.2.3 Sucção Mátrica = 100 kPa	119
6.2.2.4 Sucção Mátrica = 200 kPa	120
6.2.2.5 Análise dos resultados com mesmo nível de sucção mátrica	121
7 Interpretação dos Resultados	122
7.1 Análise conjunta dos resultados da caracterização física, química e	
mineralógica	122
7.2 Compressibilidade do material	125
7.2.1 Amostras submersas	125
7.2.2 Amostras não saturadas	126
7.3 Resistência ao cisalhamento	128
7.3.1 Critério de definição de ruptura utilizado	128
7.3.2 Resistência ao cisalhamento das amostras submersas	129
7.3.3 Resistência ao cisalhamento na condição não saturada	132
7.4 Comparação dos resultados obtidos com estimativas indiretas da	
resistência ao cisalhamento através de formulações simplificadas	137
7.5 Comparação dos resultados obtidos com outros materiais encontrados	na
literatura	140
8 Conclusões e sugestões	145
8.1 Conclusões	145
8.1.1 Caracterizações física, química e mineralógica	145
8.1.2 Curva característica	146
8.1.3 Compressibilidade	146
8.1.4 Resistência ao cisalhamento	146
8.2 Sugestões	148
Referências Bibliográficas	149
Apêndice A. Calibração dos equipamentos eletrônicos e Saturação do Disc	o
Cerâmico	159
A.1. Calibração dos instrumentos elétricos de medição	159
A.2. Saturação do Disco Cerâmico de Alto Valor de Entrada de Ar (DAVE)	165
Apêndice B. Velocidade de cisalhamento	167
B.1. Ensaio de Cisalhamento Direto Convencional	167
B.2. Ensaio de Cisalhamento Direto com Sucção Controlada	168

Lista de figuras

Figura 2.1 – Elemento de solo não saturado com a fase gasosa contínua.	
(adaptado de Fredlund e Morgenstern, 1977).	29
Figura 2.2: Variáveis de estado de tensão para solos não saturados (adaptado)
de Fredlund e Morgenstern, 1977).	32
Figura 2.3 – Curvas de calibração para os papéis filtro Whatman nº. 42 e	
Schleicher & Schuell no. 589. (Marinho, 1994)	37
Figura 2.4 – Comparação entre diversas técnicas de medição de sucção (Lee	е
Wray, 1995).	39
Figura 2.5 – Pontos principais na curva característica de retenção de água	
(Adaptado de Fredlund e Xing, 1994)	40
Figura 2.6 – Influência das parcelas de sucção na curva característica	
(MacQueen e Miller, 1974).	41
Figura 2.7 – Efeito da histerese na curva característica de sucção (Hillel, 1971).42
Figura 2.8 – Diferenças nas curvas características de sucção em função da	
granulometria dos solos (adaptado de Fredlund e Xing, 1994).	43
Figura 2.9 – Envoltória estendida de Mohr-Coulomb (Fredlund e Rahardjo, 199	93)4
Figura 2.10 – Envoltórias de resistência de um solo não saturado em função o	da
sucção mátrica. (Fredlund e Rahardjo, 1993)	47
Figura 2.11 – Envoltórias de resistência de um solo não saturado em função o	da
tensão normal líquida. (Fredlund e Rahardjo, 1993)	47
Figura 2.12 - Envoltória de resistência não linear no plano q $\textit{vs}\left(u_{a}\text{-}u_{w}\right)$ (Teixeira e	
Vilar, 1997).	48
Figura 2.13 – Envoltória de resistência não linear no plano tensão desviadora	na
ruptura vs sucção mátrica (Futai et al., 2004).	48
Figura 2.14 - Variação de φ' com a sucção (Rohm e Vilar, 1995).	49
Figura 2.15: Variação de φ' com a sucção (Futai et al., 2004).	49
Figura 2.16 – Envoltória possível de resistência de um solo residual não satura	ado
(de Campos, 1997).	50
Figura 3.1 – Vista Geral do Conjunto Taquaril. (Fonte:	
www.favelaeissoai.com.br).	51
Figura 3.2 – Localização da área em relação ao município de Belo Horizonte	
(adaptado de mapa disponível em www.pbh.gov.br).	52

Figura 3.3 - Temperatura em Belo Horizonte entre os anos de 1920 a 2003	
(Fonte: INMET).	54
Figura 3.4 – Precipitação média mensal em Belo Horizonte (Fonte: INMET, 2006)).54
Figura 3.5 – Mapa Geológico da região do Conjunto Taquaril (adaptado de Parizz	zi,
2002).	56
Figura 3.6 – Local de amostragem (Google Earth, 2006).	58
Figura 3.7 – Talude de retirada da amostra SR1.	59
Figura 3.8 – Talude de retirada das amostras SR2, SR3 e rocha alterada.	59
Figura 3.9 – Detalhes do solo SR1.	60
Figura 3.10 – Detalhes do solo SR2.	61
Figura 3.11 – Detalhes do solo SR3	61
Figura 4.1 – Prensa de cisalhamento direto convencional do Laboratório de	
Geotecnia da EEUFMG.	70
Figura 4.2 – Esquema Geral do Equipamento de CDSC (adaptado de Fonseca	а,
1991).	72
Figura 4.3 – Câmara de compressão do equipamento de cisalhamento direto	
com sucção controlada da PUC - Rio (Adaptado de Fonseca, 1991).	73
Figura 4.4 – Equipamento de cisalhamento direto com sucção controlada da	
PUC - Rio.	73
Figura 4.5 - Procedimento para a detecção de vazamentos (Adaptado de Delgado	lo,
1993).	75
Figura 5.1 – Curvas granulométricas das amostras SR1, SR2 e SR3.	80
Figura 5.2 - Detalhes do SR1 observados na Lupa. (a) fração pedregulho	
(aumento de 6X); (b) fração areia (aumento de 12X).	83
Figura 5.3 – Detalhes do SR2 observados na Lupa. (a) fração pedregulho (aumer	nto
de 6X); (b) fração areia (aumento de 12X).	84
Figura 5.4 – Detalhes do SR3 observados na Lupa. (a) fração pedregulho (aumer	nto
de 6X); (b) fração areia (aumento de 12X).	85
Figura 5.5 - Difratogramas da amostra total do SR1 (Legenda: N = Natural;	
G = Glicolada; Δ = Aquecida; Ct = Caulinita; I = Ilita; M = Mica).	86
Figura 5.6 - Difratogramas das frações silte e argila do SR1 (Legenda: Ct =	
Caulinita; I = Ilita; M = Mica).	87
Figura 5.7 - Difratogramas da amostra total do SR2 (Legenda: N = Natural; Δ =	=
Aquecida; Ct = Caulinita; I = Ilita; M = Mica).	88
Figura 5.8 - Difratogramas das frações silte e argila do SR2 (Legenda: Ct =	

Caulinita; I = Ilita; M = Mica).	88
Figura 5.9 - Difratogramas da amostra total e das frações silte e argila do SR3	3
(Legenda: Ct = Caulinita; I = Ilita; M = Mica, Q = Quartzo).	89
Figura 5.10 - Difratogramas das amostras totais dos preenchimentos das fratu	ıras
do solo SR3 (Legenda: Ct = Caulinita; I = Ilita; M = Mica; Q = Quartzo).	90
Figura 5.11 - Difratogramas da amostra total da amostra de rocha (Legenda: I	N =
Natural; G = Glicolada; Δ = Aquecida; CI = Clorita; M = Mica; Q = Quartzo).	91
Figura 5.12 - Difratogramas da fração silte da amostra de rocha (Legenda: N	=
Natural; G = Glicolada; Δ = Aquecida; CI = Clorita; Ct = Caulinita; M = Mica).	91
Figura 5.13 - Difratogramas da fração argila da amostra de rocha (Legenda: N	1 =
Natural; G = Glicolada; Δ = Aquecida; CI = Clorita; Ct = Caulinita; M = Mica; Q	! =
Quartzo).	92
Figura 5.14 – Curva característica de sucção em função do teor de umidade	
volumétrico – SR1.	98
Figura 5.15 – Curva característica de sucção em função do teor de umidade	
volumétrico – SR2.	99
Figura 5.16 – Curva característica de sucção em função do teor de umidade	
volumétrico – SR3.	99
Figura 5.17 – Curva característica de sucção em função do teor de umidade	
gravimétrico - SR1.	100
Figura 5.18 - Curva característica de sucção em função do teor de umidade	
gravimétrico - SR2.	101
Figura 5.19 - Curva característica de sucção em função do teor de umidade	
gravimétrico - SR3.	101
Figura 5.20 – Curva característica de sucção em função do grau de satura	ção
- SR1.	102
Figura 5.21 – Curva característica de sucção em função do grau de saturação) -
SR2.	102
Figura 5.22 – Curva característica de sucção em função do grau de saturação) –
SR2.	103
Figura 6.1 – Ensaio de cisalhamento convencional: curvas tensão-deslocame	nto.1
Figura 6.2 – Curvas de deslocamento vertical e variação volumétrica em funça	
	109
Figura 6.3 – Curvas de tensão cisalhante, deslocamento vertical e variação	
,	110
Figura 6.4 – Curvas de deslocamento vertical e variação volumétrica em funça	ão

do tempo da série II (valores entre parênteses indicam o número do ensaio).	111
Figura 6.5 – Curvas de tensão cisalhante, deslocamento vertical e variação	
volumétrica em função do deslocamento horizontal da série II (valores entre	
parênteses indicam o número do ensaio).	112
Figura 6.6 – Curvas de deslocamento vertical e variação volumétrica em funç	ão
do tempo da série III (valores entre parênteses indicam o número do ensaio).	113
Figura 6.7 – Curvas de tensão cisalhante, deslocamento vertical e variação	
volumétrica em função do deslocamento horizontal da série III (valores entre	
parênteses indicam o número do ensaio).	114
Figura 6.8 – Curvas tensão cisalhante, deslocamento vertical e variação	
volumétrica em função do deslocamento horizontal dos ensaios com sucção	
mátrica de 25 kPa (valores entre parênteses indicam o número do ensaio)	117
Figura 6.9 – Curvas tensão cisalhante, deslocamento vertical e variação	
volumétrica em função do deslocamento horizontal dos ensaios com sucção	
mátrica de 50 kPa (valores entre parênteses indicam o número do ensaio).	118
Figura 6.10 – Curvas tensão cisalhante, deslocamento vertical e variação	
volumétrica em função do deslocamento horizontal dos ensaios com sucção	
mátrica de 100 kPa.	119
Figura 6.11 – Curvas tensão cisalhante, deslocamento vertical e variação	
volumétrica em função do deslocamento horizontal dos ensaios com sucção	
mátrica de 200 kPa.	120
Figura 7.1 – Curva de compressibilidade para amostras submersas.	126
Figura 7.2 – Variação do índice de vazios com a sucção mátrica aplicada para	а
cada série de ensaios com tensão normal líquida constante.	126
Figura 7.3 - Variação do índice de vazios com a sucção mátrica normalizada.	127
Figura 7.4 - Variação do índice de vazios com a tensão normal líquida.	128
Figura 7.5 - Critério utilizado na determinação dos pontos de ruptura (de Cam	ipos
e Delgado, 1995).	129
Figura 7.6 – Envoltória de resistência para amostras submersas.	130
Figura 7.7 – Envoltória não linear de resistência ao cisalhamento para as	
amostras submersas.	131
Figura 7.8 – Relação entre o índice de vazios após o adensamento e a tensão	0
cisalhante de ruptura.	131
Figura 7.9 – Envoltórias de resistência em função da (u _a -u _w).	133
Figura 7.10 - Envoltórias de resistência em função da (σ-u _a).	134
Figura 7.11 – Variação da Coesão aparente com a (u _a -u _w).	135

Figura 7.12 – Variação de φ° e φ° com a (u _a -u _w).	136
Figura 7.13 – Envoltória de Resistência Tridimensional.	137
Figura 7.14: Relação entre o parâmetro de ajuste (κ) e o índice de plasticidad	de
(IP) (adaptado de Garven e Vanapalli, 2006).	138
Figura 7.15 - Comparação da envoltória de resistência ao cisalhamento não	
saturada obtida experimentalmente e estimada.	139
Figura 7.16 – Envoltória de resistência em função da sucção mátrica com (σ-	·u _a)
= 50 kPa para 6 solos residuais.	142
Figura 7.17 – Variação de φ ^b com a sucção mátrica.	143
Figura 7.18 – Variação de φ ^b /φ' com a sucção mátrica.	143
Figura 7.19 – Relação entre o valor de φ ^b para a sucção de 100 kPa e a	
porcentagem de finos.	144
Figura 7.20 – Relação entre o valor de ϕ^b para a sucção de 100 kPa e índice	de
plasticidade (IP).	144
Figura A. 1 – Sistema de aquisição de dados e fonte de tensão.	159
Figura A. 2 - Curva de calibração dos transdutores de deslocamento horizon	tal
(a) e vertical (b).	162
Figura A. 3 – curvas de calibração das células de carga vertical (a) e horizon	tal
(b).	163
Figura A. 4 – curvas de calibração dos transdutores de pressão de água (a) e	e ar
(b)	164
Figura A. 5 – curva de calibração do medidor de variação volumétrica	165
Figura A. 6 – saturação do disco cerâmico de alto valor de entrada de ar.	166
Figura B.1 - Solução gráfica para a determinação dos parâmetros de ajuste a	a, n
e m (adaptado de Fredlund e Xing, 1994).	170
Figura B. 2 - Ajuste da curva característica utilizando a proposta de Fredlund	е
Xing (1994).	171
Figura B. 3 - Ajuste da curva característica utilizando a proposta de Fredlund	е
Xing (1994).	172
Figura B. 4 - Estimativa da permeabilidade não saturada do solo SR2 utilizan	ido a
metodologia de Fredlund et al. (1994).	174

Lista de tabelas

Tabela 2.1 – Principais expressões para a avaliação da tensão efetiva para so	olos
não saturados (Adaptado de Fredlund e Morgenstern, 1977).	31
Tabela 2.3 – Tempo de equilíbrio sugerido para o papel filtro na medição da	
sucção total (Marinho 1994).	36
Tabela 2.4 – Equações que relacionam teor de umidade do papel filtro e sucç-	ão
(adaptado de Marinho, 1997).	37
Tabela 3.1 – Resumo da amostragem.	57
Tabela 4.1 – Amostras para caracterização mineralógica.	64
Tabela 4.2 – Resumo do programa experimental de Caracterização Física.	66
Tabela 4.3 – Resumo do programa experimental de Caracterização Mineralógica	е
Química.	66
Tabela 4.4 – Pontos para a curva característica do solo SR1.	68
Tabela 4.5 – Pontos para a curva característica do solo SR2.	69
Tabela 4.6 – Pontos para a curva característica do solo SR3.	69
Tabela 4.7 – Ensaios de cisalhamento direto convencional.	71
Tabela 4.8 – Concentrações de soluto para as sucções dos ensaios de CDSC	.76
Tabela 4.9 – Ensaios de cisalhamento direto com sucção controlada.	78
Tabela 5.1 – Índices físicos do em seu estado natural.	79
Tabela 5.2 - Resumo da Granulometria dos três tipos de solo (valores em %)	80
Tabela 5.3 – Limites de consistência e atividade das argilas.	81
Tabela 5.4 – Mineralogia das amostras de solo.	82
Tabela 5.5 - Análise química total em porcentagem em peso.	93
Tabela 5.6 – Análise química parcial – Ataque sulfúrico.	94
Tabela 5.7 - Análise química parcial – Complexo sortivo.	94
Tabela 5.8 – Valores típicos de CTC para alguns argilominerais (Santos, 1975	5).95
Tabela 5.9 – Teor dos compostos da fórmula estrutural padrão da ilita e caulir	nita
(adaptado de Weaver e Pollard, 1975, citado por Santos, 1998, e de Santos,	
1975).	95
Tabela 5.10 – Teores de ilita/mica e caulinita nas amostras de solos e rocha.	97
Tabela 5.11 – Determinação de pH (KCI), pH (H₂O) e ∆pH	97
Tabela 5.12 – Valores de entrada de ar e teor de umidade volumétrico residua	al.10

Tabela 6.1 – Índices físicos iniciais, após o adensamento e final de cada corp	00
de prova.	104
Tabela 6.2 – Índices Físicos Iniciais.	106
Tabela 6.3 – Índices Físicos após o adensamento.	107
Tabela 6.4 – Índices físicos após o cisalhamento.	107
Tabela 6.5 – Apresentação dos resultados em função da tensão normal líqui-	da
aplicada.	116
Tabela 7.1 – Densidade relativa dos grãos de alguns minerais (adaptado de	Deer
et al., 1981, apud Brant, 2005)	123
Tabela 7.2 – Valores do índice de atividade calculados pelas equações 5.1 e	7.1.1
Tabela 7.3 – Tensão cisalhante, tensão normal e deslocamento horizontal na	ì
ruptura.	129
Tabela 7.4 – Variação do ϕ ' em função de σ .	131
Tabela 7.5 – Tensão cisalhante, tensão normal líquida e deslocamento horiz	ontal
na ruptura.	132
Tabela 7.6 – Funções Hiperbólicas de Resistência.	133
Tabela 7.7 – Parâmetros de resistência em função (σ-u _a).	134
Tabela 7.8 – Resumo das características físicas dos solos comparados.	141
Tabela 7.9 – Rocha matriz e composição mineralógica dos solos comparado	s.141
Tabela A. 1 – Características dos instrumentos elétricos de medição	160
Tabela B. 1 – Velocidades calculadas para o ensaio de cisalhamento direto.	168
Tabela B.2 – Velocidade de cisalhamento para ensaios não saturados – SR2	2.175
Tabela R 3 - Valocidade de cisalhamento para ensaios não saturados - SR3	175

Lista de símbolos e abreviações

```
# = diâmetro da abertura da malha da peneira;
a, b = parâmetros de ajuste da função hiperbólica;
a, n, m = parâmetros de ajuste segundo a metodologia de Fredlund e Xing
(1994).
ABNT = Associação Brasileira de Normas Técnicas;
AI = alumínio (AI^{3+} = cátion de alumínio);
ASTM = American Society for Testing and Materials;
B = material branco sobre as concreções de manganês;
Ba = bário:
ba, ba_1, ba_2 = índices de intemperismo químico;
BH = Belo Horizonte;
c = coesão aparente do solo devido ao acréscimo de sucção mátrica;
c', \( \phi' = \text{parâmetros efetivos de resistência no ensaio de cisalhamento direto
convencional;
Ca = cálcio (Ca^{2+} = cátion de cálcio);
Cc = coeficiente de curvatura;
CDSC = cisalhamento direto com sucção controlada;
Ce = cério;
CI = clorita;
CMn = concreções de manganês;
Cr = crómio;
Ct = caulinita;
CTC = capacidade de troca catiônica;
Cu = coeficiente de uniformidade:
```

c_v = coeficiente de adensamento relacionado ao ensaio

 c_v^w = coeficiente de adensamento do solo não saturado relacionado com a fase líquida; d = distância interplanar basal dos minerais; DAVE = disco cerâmico de alto valor de entrada de ar; DCMM = Departamento de Ciências dos Materiais e Metalurgia da PUC-Rio; DRX = difração por raios-X; e = índice de vazios; e_0 = índice de vazios inicial; EEUFMG = Escola de Engenharia da Universidade Federal de Minas Gerais; Fe = ferro: g = aceleração da gravidade; G = amostra glicolada; G_s = densidade relativa dos grãos; H = hidrogênio (H⁺ = cátion de hidrogênio); H_d = altura de drenagem; I_a = índice de atividade das argilas; INMET = Instituto Nacional de Meteorologia; IP = índice de plasticidade; $K = potássio (K^+ = cátion de potássio);$ K_d = coeficiente de permeabilidade do DAVE; Ki, Kr = índices de intemperismo químico; $k_r(\psi)$ = coeficiente de permeabilidade relativa em função da sucção; k_s = coeficiente de permeabilidade saturado; K_w = coeficiente de permeabilidade do solo não saturado relacionado com a fase líquida; $k_w(\psi)$ = coeficiente de permeabilidade não saturado em função da sucção;

 L_d = espessura do DAVE;

La = lantânio;

```
LL = limite de liquidez;
LP = limite de plasticidade;
M = mica:
MG = Minas Gerais;
Mg = magnésio (Mg^{2+} = cátion de magnésio);
MH = Silte inorgânico de alta plasticidade, de acordo com a classificação de
solos do SUCS
ML = Silte inorgânico de baixa plasticidade, de acordo com a classificação de
solos do SUCS
m_2^w = inclinação da curva característica de sucção;
n = porosidade;
N = amostra natural;
Na = sódio (Na<sup>+</sup> = cátion de sódio);
Nd = neodímio:
Ni = níquel;
O = oxigênio;
o-ring = anel de borracha para vedação;
P = fósforo;
P.F. = perda ao fogo;
PUC - Rio = Pontifícia Universidade Católica do Rio de Janeiro
Q = quartzo;
S = grau de saturação;
S = enxofre:
Sc = escândio:
Si = silício;
S<sub>m</sub> = sucção mátrica;
S<sub>o</sub> = sucção osmótica;
SR1 = solo residual 1;
```

```
SR2 = solo residual 2;
SR3 = solo residual 3;
Sr = estrôncio:
S_t = sucção total;
SUCS = Sistema Unificado de Classificação de Solo;
Ti = titânio;
t<sub>f</sub> = tempo de ruptura;
top-cap = tampa metálica para distribuição uniforme da carga normal sobre toda
a área da amostra;
u<sub>a</sub> = pressão de ar;
(u_a - u_w) = sucção mátrica;
(u_a - u_w)_r = sucção mátrica na ruptura;
UFRJ = Universidade Federal do Rio de Janeiro;
URBEL = Companhia Urbanizadora de Belo Horizonte;
u<sub>w</sub> = pressão de água;
w = teor de umidade gravimétrico;
w<sub>calc</sub> = teor de umidade gravimétrico calculado utilizando o sistema de medição
de variação volumétrica;
w<sub>nat</sub> = teor de umidade gravimétrico natural;
w<sub>real</sub> = teor de umidade gravimétrico calculado a partir de secagem em estufa;
Y = itrio;
Zr = zircônio;
\alpha = ângulo de inclinação constante da curva tensão-deslocamento;
\chi = parâmetro que dependente do tipo e da estrutura do solo, do grau de
saturação, da seqüência de umedecimento e secagem, da história, do nível e da
trajetória de tensões;
\Delta^{350^{\circ}\text{C}} = amostra aquecida à 350°C;
\Delta^{550^{\circ}C} = amostra aquecida à 550°C;
\delta h = deslocamento horizontal;
```

```
\delta h,r = deslocamento horizontal na ruptura;
```

 $\delta v = deslocamento vertical;$

 ϕ_a = potencial pneumático, que corresponde a pressão na fase gasosa;

 ϕ^b = parâmetro que quantifica o aumento na resistência devido a um aumento na sucção matricial;

 ϕ_g = potencial gravitacional, determinado pela elevação do ponto considerado em relação ao nível de referencia;

 $\phi_{\rm m}$ = potencial mátrico, resultante de forças capilares e de adsorção;

 $\phi_{\rm o}$ = potencial osmótico ou de soluto, correspondente à pressão osmótica da água do solo;

 ϕ_p = potencial de consolidação, que corresponde à parcela de sobrecarga aplicada no terreno que é transmitida a pressão da água intersticial;

 ϕ_t = potencial total;

 γ_d = peso específico seco;

 γ_{nat} = peso específico natural;

 γ_w = peso específico da água;

 η = parâmetro referente à drenagem;

 κ = parâmetro de ajuste;

 λ = fator de impedância;

 Θ = teor de umidade volumétrico normalizado;

 θ = teor de umidade volumétrico;

 θ_s = teor de umidade volumétrico do solo saturado;

 θ_{r} = teor de umidade volumétrico do solo correspondente à condição de saturação residual;

 ρ_s = massa específica dos grãos de solo;

 $\rho_{\rm w}$ = densidade da água;

 σ = tensão normal;

 $(\sigma - u_a)$ = tensão normal líquida;

```
\begin{split} &(\sigma\text{-}u_a)_r\text{=}\text{tens\~ao}\text{ normal líquida na ruptura;}\\ &\sigma'\text{=}\text{tens\~ao}\text{ efetiva;}\\ &\sigma_r\text{=}\text{tens\~ao}\text{ normal na ruptura;}\\ &\tau\text{=}\text{tens\~ao}\text{ cisalhante;}\\ &\tau_r\text{=}\text{tens\~ao}\text{ cisalhante}\text{ na ruptura;}\\ &\tau_o\text{=}\text{tens\~ao}\text{ cisalhante}\text{ para sucç\~ao}\text{ zero obtida no ensaio de cisalhamento direto}\\ &\text{convencional em amostras submersas;}\\ &\psi\text{=}\text{sucç\~ao;}\\ &\psi_b\text{=}\text{press\~ao}\text{ de entrada de ar.} \end{split}
```